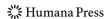
Salicylic-Acid-Mediated Enhanced Biological Treatment of Wastewater

Anshuman A. Khardenavis • Atya Kapley • Hemant J. Purohit

Received: 16 October 2008 / Accepted: 20 January 2009 /

Published online: 4 February 2009

© Humana Press 2009


Abstract Activated sludge represents a microbial community which is responsible for reduction in pollution load from wastewaters and whose performance depends upon the composition and the expression of degradative capacity. In the present study, the role of salicylic acid (SA) has been evaluated for acclimatization of activated sludge collected from a combined effluent treatment plant followed by analysis of the physiological performance and microbial community of the sludge. The biodegradative capacity of the acclimatized activated sludge was further evaluated for improvement in efficiency of chemical oxygen demand (COD) removal from wastewater samples collected from industries manufacturing bulk drugs and dyes and dye intermediates (wastewater 1) and from dye industry (wastewater 2). An increase in COD removal efficiency from 50% to 58% and from 78% to 82% was observed for wastewater 1 and wastewater 2, respectively. Microbial community analysis data showed selective enrichment and change in composition due to acclimatization by SA, with 50% of the clones showing sequence homology to unidentified and uncultured bacteria. This was demonstrated by analysis of partial 16S rDNA sequence data generated from dominating clones representing the metagenome which also showed the appearance of a unique population of clones after acclimatization, which was distinct from those obtained before acclimatization and clustered away from the dominating population.

Keywords Acclimatization · Activated sludge · Salicylic acid · Microbial diversity · Wastewater treatment

Introduction

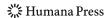
The non-performance of waste treatment facilities, especially the combined effluent treatment plants (CETPs) at their optimum levels due to the mixed stream of wastes and the production schedules of different industries, results in a lag period characterized by acclimatization of the

A. A. Khardenavis · A. Kapley · H. J. Purohit ()
Environmental Genomics Unit, National Environmental Engineering Research Institute, CSIR, Nehru Marg, Nagpur 440 020, Maharashtra, India e-mail: hj_purohit@neeri.res.in

bacterial biomass to the organic compounds in waste streams followed by detectable biodegradation. Such acclimatization may seldom lead to simultaneous acclimation to structurally related molecules due to induction of enzymes involved in the early steps in the biodegradation pathway, as was first observed by Soulas et al. [1] in the case of soil communities which, when acclimated to 2,4-dichlorophenoxyacetic acid (2,4-D), were simultaneously able to degrade other pesticides.

Isolation of various bacteria from different environmental niches such as CETPs and their role in degradation of a variety of aromatic compounds has been demonstrated in our laboratory [2–8]. Also, there are few reports on the acclimatizing effect of organic compounds on improvement in catabolic capacity of biomass. Buiotron et al. [9] and Khardenavis et al. [10] studied the acclimatizing effect of phenol on sludge biomass and reported a one to twofold increase in degradation capacity. A lag phase of 30 days with acclimatization followed by detectable chloride removal from 2,4-DCP was also observed in an upflow anaerobic reactor [11].

The use of salicylic acid for induction of bacterial cells has been restricted to its medicinal properties [12] with an enhanced resistance of *Escherichia coli* to multiple antibiotics including quinolines, cephalosporins, nalidixic acid, etc. when grown in presence of salicylic acid [13, 14]. With this effect of salicylic acid in view, we acclimatized the sludge biomass to salicylic acid in the presence of wastewater from dye industry followed by studies to degrade different aromatic compounds, viz, phenol, benzoic acid, 2,4-D, and salicylic acid. Acclimatized sludge was also used to treat wastewaters from two CETPs, and change in microbial count and non-culturable diversity was studied over the acclimatization period in order to evaluate the role of degradative genotype which evolved as a result of prior exposure of sludge biomass to the acclimatizing compound.


Materials and Methods

Reactor Setup and Acclimatization of Activated Sludge

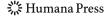
The acclimatization studies were carried out in 5-L capacity glass bottle with activated sludge from a CETP. Three liters of this sludge was mixed with 1 L wastewater from a dye industry, and 50 ppm of salicylic acid (SA) was added daily for acclimatization in addition to 5 ppm KH₂PO₄ as a source of phosphate. Aeration was provided by an aquarium pump and spent supernatant was replaced with fresh wastewater at every 48-h interval up to a period of 10 days. The sludge was further aerated up to 17 days with daily addition of salicylic acid and phosphate followed by evaluation of degradation potential of the acclimatized sludge for two different wastewaters: (1) mixed wastewater from dye and bulk drug manufacturing industries (wastewater 1) and (2) dye industry wastewater (wastewater 2). Similar experiment was repeated after a period of 60 days from start-up of reactor, and degradation potential was studied based on COD removal from the wastewaters.

Defining the Eubacterial Diversity

Microbial count (expressed as colony forming units, CFUs) in the sludge during acclimatization was determined at 2, 4, 6, 8, 10, and 17 days on 1× mineral agar medium (MM) [10] containing 1 mmol concentration of either of the following substrates as sole sources of carbon: phenol, benzoic acid, salicylic acid, 2,4-dichlorophenoxyacetic acid, and phthalic anhydride. The composition of the medium is as follows (per liter of distilled

water): MgSO₄·7H₂O (10%), 2.0 mL; NH₄Cl (10%), 2.5 mL; CaCl₂·2H₂O (10%), 1.0 mL; phosphate buffer (K₂HPO₄+KH₂PO₄, 56 mM, pH 7.0), 40.0 mL; Hutner's solution, 20.0 mL; and agar, 20.0 g. The plates were incubated at 30°°C and the number of CFUs was recorded after 48 h.

Change in eubacterial diversity was analyzed by constructing 16S rDNA libraries from the sludge biomass before and after acclimatization with salicylic acid. Polymerase chain reaction (PCR)-compatible total sludge DNA was prepared and 5 μL of the DNA was used as template to amplify 16S rDNA using universal 16S rDNA primers (forward primer 27F 5'-AGAGTTTGATCMTGGCTCAG-3' and reverse primer 1492R 5'-CGGYTACCTTGT TACGACTT-3') as reported earlier [15, 16]. The PCR reactions consisted of 30 cycles of denaturation at 94°°C for 1 min, annealing at 55°°C for 1 min, and extension at 72°°C for 1 min, which amplified a 1,466-bp product which was purified using the gel extraction kit from Qiagen (Hilden, Germany) and cloned into pDrive cloning vector (Qiagen PCR cloning plus kit). Recombinant clones were screened by blue-white colony selection followed by plasmid DNA purification from transformants grown overnight in 5 mL Luria-Bertani medium containing 100 μg mL⁻¹ ampicillin using Qiagen Q-20 tips. The 16S rDNA insert was amplified by PCR as described above and gel purified, and the 1.5-kb inserts were analyzed by amplified ribosomal DNA restriction analysis using AluI restriction enzyme. Based on the digestion pattern, clones were identified and sequencing was carried out from the 5' end using the T7 or SP6 primer. Sequences were deposited in GenBank (http://www.ncbi.nlm.nih.gov/) and phylogenetic tree was constructed using the BOOTSTRAP tree method from Clustal X software developed by Thompson et al. [17].


Degradation Studies

Twenty milliliters 0.1× MM containing different concentrations (0.1, 0.25, 0.5, 1.0, 2.0, and 2.5 mmol) of either phenol, benzoic acid, salicylic acid, or 2,4-D as carbon source in 50-mL conical flasks was used for degradation studies by the 17-day acclimatized sludge. The flasks were kept in an incubator shaker at 30 °C with 150 rpm agitation and samples were withdrawn at 0, 4, 8, 24, and 48 h. Residual concentration of the aromatic compounds was determined by high-performance liquid chromatography (HPLC; Perkin-Elmer, USA) with a 100×4.6-mm Chromolith RP-18e performance column (Merck, Germany) and detected using a UV/visible detector at the following wavelengths: benzoic acid, 255 nm; 2,4-D, 280 nm; phenol, 280 nm; and salicylic acid, 295 nm. HPLC grade acetonitrile and 1 mmol phosphate buffer (pH 7.0) passed through 0.2-μm membrane filter (Millipore) was used as the mobile phase in a ratio of 20:80 at a flow rate of 1.5 mL min⁻¹.

Degradation studies for the two wastewaters (1 and 2) was carried out using 17- and 60-day acclimatized sludge. Of the two wastewaters, 1.5 L was individually taken in 2-L capacity conical flasks to which the 4,000 mg $\rm L^{-1}$ acclimatized sludge was added (expressed as mixed liquor suspended solids, MLSS), while control samples consisted of unacclimatized sludge at a MLSS of 4,000 mg $\rm L^{-1}$. All the reactors were aerated with an aquarium aerator, and change in COD and biomass (MLSS) were estimated as per the standard methods [18]. The data presented are the average result of three independent experiments.

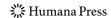
Results and Discussion

Activated sludge represents a food web in a controlled environment consisting of heterotrophic and autotrophic bacteria, fungi, and protozoa in addition to some rotifers

and metazoans, which obtain energy from carbonaceous organic matter in influent wastewater [19, 20]. Biodegradation by sludge microorganisms requires conditions conducive for adaptation and proliferation of the biomass in the presence of the pollutants in addition to the presence of the necessary catabolic pathways in the microorganisms [21]. Exposure of activated sludge to certain organic compounds can turn on the catabolic capacity for these compounds in addition to similar compounds.

The present study demonstrates the improvement of catabolic capacity of sludge after acclimatization. Degradation analysis was carried after acclimatization of sludge to salicylic acid for 17 days. Since no change in COD removal from wastewater was observed by use of sludge acclimatized to salicylic acid for more than 17 days (data not shown), hence, 17-day period was considered optimum for acclimatization. In order to understand if the effect of acclimatization would last even after stopping the acclimatization to salicylic acid, the sludge was allowed to stand for 60 days without further addition of salicylic acid before assessing its degradative potential and comparing it to the unacclimatized biomass.

Changes in Microbial Count and Diversity During Acclimatization


The change in microbial count in sludge during the acclimatization period is shown in Table 1. Absence of CFUs on phthalic anhydride plates throughout the acclimatization period was attributed to its toxicity. In the case of the remaining substrates, a decline in CFU up to 6 days was followed by a gradual increase in bacterial count in the subsequent sampling. Phenol was found to support the highest growth of bacteria, and though CFU on phenol media plates decreased initially from 433×10^5 to 120×10^5 , the microbial count recovered and finally stabilized at 310×10^5 after 17 days of acclimatization. This initial decrease was characteristic of the lag phase in bacteria during which the microbial community adapted to the presence the salicylic acid in the system. Only those bacteria capable of producing inducible enzymes for degradation of salicylate and other structurally related aromatic molecules were acclimatized and survived, thus resulting in an increase in their number following an initial decrease.

The diversity of the different 16S rDNA clones is demonstrated in the form of a dendrogram which shows the relation between clones obtained from sludge samples taken before (B) and after (A) acclimatization with 50 ppm salicylic acid (Fig. 1). The corresponding details of the clone sequences used in tree construction and their homologies

Table 1 CFU formation on substrate agar plates during different stages of acclimatization of sludge (1 mmol concentration of each substrate used).

Substrate Time (days)	Benzoic acid	Phenol	Salicylic acid	2,4-D	Pthalic anhydride
0	1,333 (±91)	433 (±33)	421 (±21)	600 (±30)	0
2	850 (±55)	494 (±29)	337 (±17)	125 (±15)	0
4	297 (±27)	120 (±14)	44 (±10)	110 (±5)	0
6	244 (±24)	145 (±18)	26 (±4)	92 (±8)	0
8	94 (±6)	156 (±19)	7 (±3)	47 (±3)	0
10	143 (±7)	170 (±10)	5 (±1)	87 (±8)	0
17	100 (±15)	310 (±25)	4 (±3)	100 (±12)	0

SD standard deviation

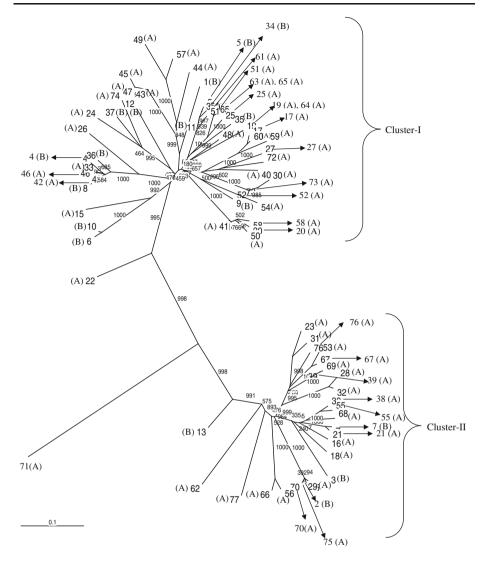


Fig. 1 Phylogenetic tree based on partial 16S rDNA sequences showing relationship between different unculturable bacterial clones observed in activated sludge from CETP before and after acclimatization with salicylic acid. The clones are identified by serial numbers from Table 2. B denotes sequences obtained from sludge sample before acclimatization, while A denotes sequences obtained from sludge sample after acclimatization to salicylic acid. Bootstrap values are mentioned at branching points. Other sequence details are given in Table 2

to existing sequences in the genome database are described in Table 2. The differentiation between the sequences of B and A samples was best represented using the unrooted tree format which showed two distinct clusters (I and II). It is seen from Fig. 1 that cluster I consisted of clones from both the samples (B and A), while cluster II consisted of unique population of clones which emerged as a result of acclimatization (A), with the exception of four clones which belonged to sample before acclimatization (B).

It is clear from Fig. 1 and Table 2 that clones 1, 9, and 35 (HKT-877, HKT-889, and HKT-918) from cluster I, which were obtained from sample B, were eliminated during

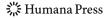


Table 2 Results of the 16S rDNA clone library analyzed by BLAST.

Sr. no.	Clone no.	Accession no. of clone	Acclimatization stage	Blast result			
110.	no.	or cione	Before/After	Homology to	Accession no.	% Homology	
1	НКТ-	DQ989417	Before	Clostridium sp.	X75909	94	
	877			Tissierella praeacuta	X80833	92	
2	HKT-	DQ989418	Before	unidentified bacterium	AF097803	96	
	882	D 0 0 0 0 1 1 0	D 0	Desulfovibrio inopinatus	AF177276	88	
3	HKT-	DQ989419	Before	Hyphomicrobium zavarzinii	Y14305	95	
	883	D0000420	D.C	Hyphomicrobium zavarzinii	Y14305	95	
4	HKT-	DQ989420	Before	Meiothermus ruber	L09672	87	
_	884	D 0 0 0 0 1 0 1	D 0	Meiothermus ruber	Z15059	87	
5	HKT-	DQ989421	Before	unidentified bacterium	AF097800	95	
	885			unidentified bacterium	AF097815	93	
6	HKT-	DQ989422	Before	uncultured bacterium SHA-53	AJ249111	96	
_	886			uncultured bacterium SJA-61	AJ009469	95	
7	HKT-	DQ989423	Before	Hyphomicrobium vulgare	Y14302	95	
_	887			Hyphomicrobium zavarzinii	Y14305	94	
8	HKT-	DQ989424	Before	Meiothermus ruber	L09672	87	
	888			Meiothermus ruber	Z15059	87	
9	HKT-	DQ989425	Before	Desulfuromonas acetexigens	U23140	99	
	889			Desulfuromonas chloroethenica	U49748	94	
10	HKT-	DQ989426	Before	Uncultured bacterium SHA-53	AJ249111	97	
	890			uncultured bacterium SJA-61	AJ009469	96	
11	HKT-	DQ989427	Before	Unidentified bacterium	AF097800	94	
	891			Unidentified bacterium	AF097815	94	
12	HKT- 892	DQ989428	Before	Uncultured sponge symbiont WS61	AF186448	90	
				Rhizosphere soil bacterium RSC-II-7	AJ252671	89	
13	HKT-	DQ989429	Before	Collinsella aerofaciens	AJ245919	99	
	893			Collinsella aerofaciens	AB011815	99	
14	HKT-	DQ989434	After	Unidentified bacterium	AF097803	96	
	894			Unidentified bacterium	X84521	93	
15	HKT- 895	DQ989435	After	Unidentified <i>Verrucomicrobium</i> group OPB35	AF027005	98	
				Mycoplasma mobile	M24480	91	
16	HKT-	DQ989436	After	Sphingomonas pituitosa	AJ243751	96	
	896			Sphingomonas sp.	AB033945	96	
17	HKT-	DQ989437	After	Unidentified bacterium	AB021333	91	
	897			Pseudoxanthomonas sp. M1-3	AB039330	90	
18	HKT-	DQ989438	After	Rhodobacter veldkampii	D16421	94	
	898			Rhodobacter sphaeroides	X53855	94	
19	HKT-	DQ989439	After	Uncultured bacterium	AF143826	87	
	899			Mycoplana dimorpha	D12786	88	
20	HKT-	DQ989440	After	Unidentified bacterium	AF097803	96	
	900			Unidentified bacterium	X84521	96	
21	HKT-	DQ989441	After	Hyphomicrobium vulgare	Y14302	96	
	901			Hyphomicrobium zavarzinii	Y14305	95	
22	HKT-	DQ989442	After	Unidentified bacterium	X84557	94	
	902			Uncultured eubacterium	AJ232838	94	

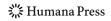


Table 2 (continued)

Sr. no.	Clone no.	Accession no. of clone	Acclimatization stage	Blast result		
110.	no.	or crone	Before/After	Homology to	Accession no.	% Homology
23	HKT-	DQ989443	After	Uncultured beta	AF204254	96
	903			proteobacterium		
				Uncultured beta	AF204253	96
				proteobacterium		
24	HKT-	DQ989444	After	Uncultured eubacterium WR179	AJ233562	91
	904			Arthrobacter sp. CF-43	AJ243421	89
25	HKT- 905	DQ989445	After	Unidentified proteobacterium WR110	X65580	95
				Uncultured eubacterium	AJ233472	96
26	HKT-	DQ989446	After	Deinococcus proteolyticus	Y11331	86
	908			Desulfuromusa kysingii	X79414	89
27	HKT-	DQ989447	After	Uncultured freshwater	Z99999	92
	909			bacterium LD28		
				Uncultured bacterium SY6-54	AF296203	93
28	HKT-	DQ989448	After	Deinococcus radiophilus	Y11333	89
	910			Deinococcus murrayi	Y13042	88
29	HKT-	DQ989449	After	Unidentified bacterium	AF097803	96
	911			Desulfovibrio inopinatus	AF177276	89
30	HKT-	DQ989450	After	Pseudomonas stutzeri	AJ288151	95
	912			Pseudomonas fragi	D84014	94
31	HKT-	DQ989451	After	Thauera selenatis	Y17591	97
	913	D 0 0 0 0 1 5 0		Uncultured bacterium SJA-186	AJ009507	97
32	HKT-	DQ989452	After	Deinococcus radiophilus	Y11333	90
	914			Deinococcus geothermalis	AJ000002	89
33	HKT-	DQ989453	After	Meiothermus silvanus	X84211	89
2.4	915	D0000420	D.C	Meiothermus silvanus	Y13599	87
34	HKT-	DQ989430	Before	Unidentified bacterium	AF097800	95
2.5	917	D0000421	D.C	Unidentified bacterium	AF097815	94
35	HKT-	DQ989431	Before	Paracoccus sp. MBIC4036	AB025192	94
26	918	D0000422	D.C	Paracoccus sp. MBIC4019	AB025190	94
36	HKT-	DQ989432	Before	Meiothermus silvanus	X84211	85
37	922 HKT- 923	DQ989433	Before	Meiothermus silvanus Microbacterium sp. VKM Ac- 2016	Y13599 AB042081	85 92
	923			Rathayibacter festuci	AF159365	92
38	HKT-	DQ989454	After	Pseudomonas	AB021393	96
30	925	DQ969434	Altei	carboxydohydrogena	AD021393	90
	923			Afipia genosp. 4 strain G-3644	U87768	96
39	HKT-	DQ989455	After	Frateuria aurantia	AJ010481	94
59	лк 1- 926	DQ303433	AIIGI	Cimanggu media isolate 88	AF229452	94 94
40	HKT-	DQ989456	After	Uncultured bacterium SJA-186	AF229432 AJ009507	9 4 96
T U	927	DQ707430	/ 11 (C)	Thauera sp. mz1t	AF110005	95
41	HKT-	DQ989457	After	Unidentified bacterium	AF097803	96
7.1	929	50,0,751	11101	Unidentified bacterium	X84521	95
42	HKT-	DQ989458	After	Deinococcus proteolyticus	Y11331	94
	930	20,0,70	. 11101	Deinococcus sp. MBIC3950	AB022911	91
43	HKT-	DQ989459	After	Polaribacter franzmannii	U14586	88
15	931	24,0,70,	. 11101	Marine psychrophile IC054	U85883	89

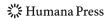


Table 2 (continued)

Sr. no.	Clone no.	Accession no. of clone	Acclimatization stage Before/After	Blast result		
				Homology to	Accession no.	% Homology
44	HKT- 934	DQ989461	After	Uncultured eubacterium WCHB1-69	AF050545	92
				Uncultured freshwater bacterium LCK-81	AF107337	89
45	HKT- 935	DQ989462	After	Unidentified marine eubacterium	L10944	90
				Unidentified marine eubacterium	L10945	89
46	HKT-	DQ989463	After	Meiothermus silvanus	X84211	84
	936			Meiothermus silvanus	Y13599	84
47	HKT- 937	DQ989464	After	Unidentified marine eubacterium	L10944	91
				Uncultured bacterium MK22	AF087075	87
48	HKT-	DQ989465	After	Uncultured eubacterium	AJ006014	93
	939			Sphingomonas stygia	U20775	93
49	HKT- 940	DQ989466	After	Cytophaga-like bacterium QSSC9-14	AF170754	88
				Cytophaga-like bacterium QSSC9-3	AF170749	89
50	HKT-	DQ989467	After	Unidentified bacterium	AF097803	96
	941			Unidentified bacterium	X84521	96
51	HKT-	DQ989468	After	Alpha proteobacterium A0838	AF235999	95
	942			Hyphomicrobium sp. P2	AF148858	95
52	HKT-	DQ989469	After	Pseudomonas sp. B13	AF039489	97
52	944	D0000470	A Q	Pseudomonas stutzeri	AJ006103	96 96
53	HKT- 945	DQ989470	After	Pseudomonas sp.	AD020592	96 96
54	HKT-	DQ989471	After	Pseudomonas alcalophila Desulfococcus multivorans	AB030583 M34405	96 96
J 4	951	DQ9694/1	Altei	Unidentified sulfate-reducing bacterium 2B1	U85478	97
55	HKT-	DQ989472	After	Nitrobacter hamburgensis	L11663	96
	952			Nitrobacter hamburgensis	L35502	96
56	HKT-	DQ989473	After	Leucobacter komagatae	D45063	96
	953			Arthrobacter sp. MB6-07 16	U85897	96
57	HKT- 954	DQ989474	After	Cytophaga-like bacterium QSSC9-14	AF170754	89
				Potato plant root bacterium RC- III-71	AJ252729	89
58	HKT-	DQ989475	After	Unidentified bacterium	AF097803	96
	956			Unidentified bacterium	X84521	96
59	HKT-	DQ989476	After	Uncultured bacterium mle1-45	AF280866	87
	957	D0000155	4.0	Pseudoxanthomonas sp. M1-3	AB039330	87
60	HKT-	DQ989477	After	Unidentified bacterium	AB021333	90
<i>(</i> 1	958	D0000470	Α Ω	Stenotrophomonas sp.	AJ002814	89
61	HKT-	DQ989478	After	Unidentified bacterium	AF097803	96 05
62	959 HKT-	DQ989479	After	Unidentified bacterium Uncultured eubacterium	X84521 AF050600	95 90
02	960	DQ7074/7	AIRI	WCHB1-07	AT:030000	30

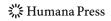
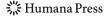
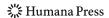



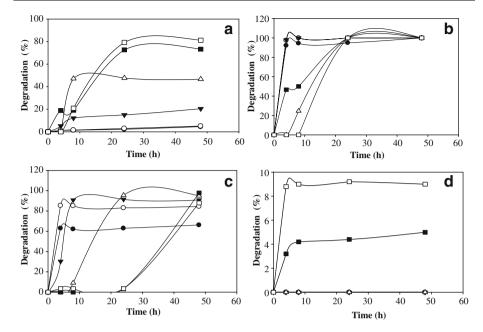
Table 2 (continued)

Sr. no.	Clone no.	Accession no. of clone	Acclimatization stage Before/After	Blast result		
				Homology to	Accession no.	% Homology
				Uncultured eubacterium WCHB1-26	AF050599	91
63	HKT-	DQ989480	After	Bradyrhizobium lupini	U69637	96
	961			Nitrobacter winogradskyi	L35506	96
64	HKT-	DQ989481	After	Unidentified bacterium	AF097800	96
	962			Filomicrobium fusiforme	Y14313	95
65	HKT-	DQ989482	After	Nitrobacter winogradskyi	L35506	97
	963			Nitrobacter sp.	L11662	97
66	HKT-	DQ989483	After	Oerskovia xanthineolytica	X79453	93
	964			Cellulomonas cellulans	AB023355	93
67	HKT-	DQ989484	After	Pseudomonas alcalophila	AB030583	98
	965			Pseudomonas pseudoalcaligenes	Z76666	98
68	HKT-	DQ989485	After	Zoogloea ramigera	X74915	99
	966			Zoogloea ramigera	D14255	99
69	HKT-	DQ989486	After	Frateuria aurantia	AJ010481	94
	967			Cimanggu media isolate 88	AF229452	93
70	HKT-	DQ989487	After	Unidentified bacterium	AF097803	96
	968			Desulfovibrio inopinatus	AF177276	89
71	HKT-	DQ989488	After	Alpha proteobacterium	AB024595	87
	969			Uncultured bacterium	AF143826	87
72	HKT-	DQ989489	After	Alcaligenes defragrans	AJ005450	95
	970			Alcaligenes defragrans	AJ005447	95
73	HKT-	DQ989490	After	Pseudomonas stutzeri	AJ288151	96
	971			Pseudomonas stutzeri	AF094748	96
74	HKT-	DQ989491	After	Microbacterium sp. SB22	Y07842	96
	972			Gram-positive bacterium str. 13-2	AB008512	96
75	HKT-	DQ989492	After	Unidentified bacterium	AF097803	95
	973			Desulfovibrio inopinatus	AF177276	89
76	HKT-	DQ989493	After	Leptothrix sp. MBIC3364	AB015048	94
	974	•		Lautropia sp. oral clone AP009	AY005030	93
77	HKT-	DQ989494	After	Uncultured bacterium BA2	AF087043	87
	975	-		Benzene mineralizing consortium clone	AF029041	85

acclimatization and did not show up in sets of clones obtained from sample A. Similarly, clones 4 and 8 (HKT-884 and HKT-888) from sample B having sequence homology to *Meiothermus ruber* were not seen after acclimatization, though clone 36 (HKT-922) from sample B having homology to *Meiothermus silvanus* was observed after acclimatization in the form of clones 33 and 46 (HKT-915 and HKT-936), and all these clones clustered together in cluster I.

From Table 2, it is seen that of the different clones, nearly 41% of those obtained from sludge before acclimatization showed sequence homology to unidentified uncultured bacteria, while 50% were unidentified or uncultured amongst those obtained after


acclimatization. This indicated that there was an increase in ratio of such bacteria as a result of acclimatization with their possible role in the degradation of different aromatic compounds. Our results are consistent with those obtained by Dojka et al. [22] who used culture-independent methods for analyzing the microbial diversity involved in intrinsic bioremediation of aquifer contaminated with hydrocarbons (mainly jet fuel) and chlorinated solvents and found that approximately 50% of the 812 clones screened by restriction fragment length polymorphisms were unique. In contrast, Popp et al. [23] found the existence of moderate bacterial diversity in clone libraries during bioremediation of soils contaminated with mineral oil hydrocarbons which was dominated by γ -proteobacteria followed by α - and β -proteobacteria with the following dominant genera, e.g., *Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax*, and *Thiobacillus*.

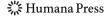

As mentioned above, a unique feature of the tree shown in Fig. 1 was the occurrence of a population of clones which formed a separate cluster from those in cluster I, indicating their distinctness from majority of the population of clones. Of the 26 clones belonging to this cluster (cluster II), 22 belonged to sample A, while only four belonged to sample B. The genetic relatedness of these 26 clones was further clarified from a separate dendrogram which was drawn using sequences of these clones (data not shown). This dendrogram showed that of the four clones from sample B, one (HKT-882) clustered with three clones from sample A (HKT-911, HKT-968, and HKT-973), and all of these clones had sequence homology to the same unidentified bacterium (accession no. AF097803), while clones 3 and 7 (HKT-883 and HKT-887) clustered with clone 21 (HKT-901) and shared sequence homology to Hyphomicrobium. The occurrence of these clones from sample B with majority of those of sample A suggested that these bacteria survived the acclimatization to salicylic acid and were also detected in the sets of clones obtained after acclimatization. Cluster II also showed the presence of three clones (HKT-908, HKT-910, and HKT-914) which shared sequence homology with *Dienococcus*, while remaining clones in this cluster were unique to this cluster and did not share sequence homology with those in cluster I. In addition to this, the dendrogram in Fig. 1 also showed a single clone-71 (HKT-969) which did not show any similarity to clones in either of the two clusters and diverged away from the two sets of clones, thereby suggesting that acclimatization enriched a population that was different from the dominating species already present.

Whiteley and Bailey [24] examined bacterial community diversity, distribution, and physiological state with respect to the remediation of phenolic polluted wastewater and highlighted the potential importance of the γ-Proteobacteria and the Cytophaga-Flavobacteria during this bioremediation process. In our study, the clone library of the biomass before acclimatization demonstrated a very diverse population showing sequences homologous to Hyphomicrobium, a soil bacteria reported in methanol-degrading consortium [25], Desulfuromonas, a sulfate-reducing bacterium studied mainly for its dehalogenation of di-, tri-, and tetra- chloroethanes [26, 27], and Collinsella, a bacterium reported in fecal samples. After acclimatization, besides the unidentified bacteria, certain clone sequences were identified as bacteria showing homology to genera like Rhodobacter [28, 29], Sphingomonas [30–32], Thauera [33, 34], etc., which are widely reported in the degradation of aromatics.

Degradation of Aromatic Compounds

The effect of acclimatization by salicylic acid on change in microbial population in sludge and its subsequent effect on catabolic potential was confirmed by the degradation studies with different aromatic compounds. Figure 2a–d represents the degradation of benzoate,

Fig. 2 Degradation of different concentrations of aromatic compounds by acclimatized activated sludge: **a** benzoic acid, **b** phenol, **c** salicylic acid, **d** 2,4-D; 0.1 mmol (*filled circle*), 0.25 mmol (*empty circle*), 0.5 mmol (*inverted triangle*), 1.0 mmol (*triangle*), 2.0 mmol (*filled square*), 2.5 mmol (*empty square*)

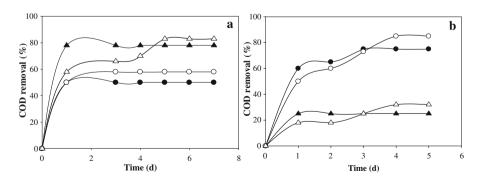

phenol, salicylate, and 2,4-D, respectively. Since no CFUs were observed on MM agar plates containing phthalic anhydride, this compound was not included in degradation studies using acclimatized sludge.

In the case of benzoate, no degradation was observed at low concentration even after 48 h, but degradation efficiency improved at higher concentrations (Fig. 2a). Fifty percent benzoate was consumed in 8 h when 1 mmol of the compound was used as sole carbon source. Benzoate (0.5 mmol) remained after 8 h and no further degradation was observed on further incubation. When 2.0 and 2.5 mmol benzoate were used, 75% and 80% degradation was achieved, respectively, in 24 h; however, 0.5 mmol benzoate still remained with no further degradation after 24 h. This indicated that benzoic acid could not serve as carbon source at concentrations lower than 0.5 mmol.

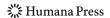
The presence of highest CFUs of phenol-utilizing microbes in sludge at the end of the acclimatization phase was reflected in 100% degradation of phenol at all the concentrations (Fig. 2b), with lower concentrations (0.1, 0.25, and 0.5 mmol) requiring only 4 h for complete removal and up to 24 h being required for complete utilization of higher concentrations of phenol (1.0, 2.0, and 2.5 mmol).

A similar trend is seen in the case of salicylate degradation. At lower concentrations of 0.1, 0.25, and 0.5 mmol, salicylate showed complete degradation in 4 h, with a slight decrease in degradation efficiency at higher concentrations. From Fig. 2c, it is seen that 1 mmol salicylate was completely degraded in 24 h, while 48 h was required for 100% removal of 2 mmol salicylate from the system, and only 88% salicylate removal was achieved at 2.5 mmol initial concentration in 48 h by the acclimatized sludge.

In contrast to the above three compounds, 2,4-D was a comparatively poor substrate and did not show any decrease at 0.5 to 1.5 mmol concentrations. At higher concentrations (2.0


and 2.5 mmol), slight decrease was seen with 1.8% and 6.5% degradation in 8 h and further incubation up to 48 h did not result in any improvement in degradation efficiency (Fig. 2d).

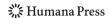
COD Removal from Wastewaters


Figure 3 shows the comparative COD removal from the two types of wastewaters (1 and 2) by sludge acclimatized to salicylic acid over that of unacclimatized sludge. A maximum COD removal of 50% (from wastewater 1) and 78% (from wastewater 2) was seen with unacclimatized sludge in 24 h which improved slightly to 58% and 82% in the case of wastewater 1 and 2, respectively, with 17-day acclimatized sludge (Fig. 3a). This corresponded to a decrease in COD values from 1,100 to 550 mg L⁻¹ (unacclimatized sludge) and to 467 mg L⁻¹ (17-day acclimatized) in the case of wastewater 1 and reduction from 1,650 to 357 mg L⁻¹ (unacclimatized sludge) and 302 mg L⁻¹ (17-day acclimatized) with wastewater 2.

In order to confirm the view that the degradative potential acquired by the sludge on account of acclimatization was retained even after the acclimatization was stopped, the above experiment was repeated with the acclimatized sludge which was further incubated for 60 days without the addition of salicylate. Figure 3b shows a decrease in overall treatment efficiency of wastewater 1 over that of 17-day acclimatized sludge (acclimatized sludge 32% and unacclimatized sludge 24% COD removal, respectively). In contrast, there was slight improvement in treatment efficiency of wastewater 2 with COD removal of 85% and 75%, respectively.

Many reports are available on the changes in microbial diversity during bioremediation; however; most of these studies deal with monitoring of in situ changes in diversity, while few studies report the role of changed diversity in bioremediation. Studies by Buitron et al. [9] found the activated sludge to be composed of 11 different strains initially, while only four dominant bacteria remained in sludge after 70 days of acclimatization by phenols with 100% degradation of different phenols in 24 h. Similar decrease in culturable diversity (based on 16S rDNA) and increase in degradative potential of dye industry sludge was reported by Kapley et al. [35] when the sludge was acclimatized to nitroaromatic wastewater. Improvement in biodegradation of petroleum hydrocarbons from 1.7% to 42% in 32 days was also observed by Li et al. [36] with soil bacteria enriched with biological

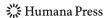
Fig. 3 COD removal from wastewaters by acclimatized activated sludge: **a** 17 days after acclimatization, **b** 60 days after acclimatization. Wastewater 1 + unacclimatized sludge (*filled triangle*), wastewater 1 + acclimatized sludge (*filled circle*), wastewater 2 + unacclimatized sludge (*filled circle*), wastewater 2 + acclimatized sludge (*empty circle*)


activated carbon. Similar enhancement in catabolic ability of anaerobic sludge for higher concentration of other substituted chlorophenols was reported by Khardenavis et al. [11] on acclimatization of anaerobic sludge to 2,4-DCP for 70 days which also resulted in a twofold increase in anaerobic culturable bacterial count. Recently, phenol-mediated improvement in COD removal by distillery sludge from 19% to 31% for raw distillery wastewater and 85% for ten times diluted wastewater after a short acclimatization period of 13 days was reported by Khardenavis et al. [10].

In the present investigation, though molecular tools were used for tracking the change in unculturable diversity before and after acclimatization and an increase in diversity in addition to increase in degradation potential of sludge biomass was observed, similar studies on acclimatization of sludge by other organic compounds need to be carried out. Also, studies on PCR amplification and probe studies for necessary catabolic enzymes are to be performed in order to further confirm effect of acclimatization in improving the catabolic potential of the sludge biomass.

Acknowledgement The authors are grateful to Director, National Environmental Engineering Research Unit (NEERI), Nagpur, for providing the facilities for carrying out this work. Funds from CSIR for network project are gratefully acknowledged.

References


- Soulas, G., Codaccioni, P., & Fournier, J. C. (1983). Effect of cross-treatment on the subsequent breakdown of 2,4-D, MCPA and 2,4,5-T in the soil behaviour of the degrading microbial populations. *Chemosphere*, 12(7-8), 1101–1106. doi:10.1016/0045-6535(83)90263-1.
- Kapley, A., Tolmare, A., & Purohit, H. J. (2001). Role of oxygen in the utilization of phenol by Pseudomonas CF600 in continuous culture. World Journal of Microbiology & Biotechnology, 17, 801– 804. doi:10.1023/A:1013526001972.
- 3. Kutty, R., Purohit, H. J., & Khanna, P. (2000). Isolation and characterization of a *Pseudomonas* sp. strain PH1 utilizing meta-aminophenol. *Canadian Journal of Microbiology*, 46, 211–217. doi:10.1139/cjm-46-3-211.
- Moharikar, A., & Purohit, H. J. (2003). Specific ratio and survival of *Pseudomonas* CF600 as co-culture for the phenol degradation in continuous cultivation. *International Biodeterioration & Biodegradation*, 52, 255–260. doi:10.1016/S0964-8305(03)00114-8.
- Qureshi, A. A., & Purohit, H. J. (2002). Isolation of consortia for the degradation of p-nitrophenol from agricultural soil. The Annals of Applied Biology, 140, 159–162. doi:10.1111/j.1744-7348.2002.tb00168.x.
- Qureshi, A., Verma, V., Kapley, A., & Purohit, H. J. (2007). Degradation of 4-nitoaniline by Stenotrophomonas strain HPC 135. International Biodeterioration & Biodegradation, 60(4), 215–218. doi:10.1016/j.ibiod.2007.03.004.
- Selvakumaran, S., Kapley, A., Kalia, V. C., & Purohit, H. J. (2007). Phenotypic and phylogenic groups to evaluate the diversity of *Citrobacter* isolates from activated biomass of effluent treatment plants. *Bioresource Technology*, 99(5), 1189–1195. doi:10.1016/j.biortech.2007.02.021.
- Thangaraj, K., Kapley, A., & Purohit, H. J. (2007). Characterization of diverse *Acinetobacter* isolates for utilization of multiple aromatic compounds. *Bioresource Technology*, 99(7), 2488–2494. doi:10.1016/j. biortech.2007.04.053.
- 9. Buitron, G., Gonzalez, A., & Lopez-Marin, L. M. (1998). Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. *Water Science and Technology*, 31(4–5), 371–378. doi:10.1016/S0273-1223(98)00133-4.
- Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2008). Phenol-mediated improved performance of active biomass for treatment of distillery wastewater. *International Biodeterioration & Biodegradation*, 62, 38–45. doi:10.1016/j.ibiod.2007.06.016.
- Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2006). In V. Murugesan, R. Jayabalou, S. Nanjundan & M. Palanichamy (Eds.), Strategies for waste management: Stabilization of upflow anaerobic reactor for dechlorination of substituted chlorophenols. Proceedings of the 8th AANESWM, Anna University, Chennai, Dec. 10–13, pp. 227–234.

- Price, C. T. D., Lee, I. R., & Gustafson, J. E. (2000). The effects of salicylate on bacteria. The International Journal of Biochemistry & Cell Biology, 32, 1029–1043. doi:10.1016/S1357-2725(00)00042-X.
- Rosner, J. L. (1985). Nonheritable resistance to chloramphenicol and other antibiotics induced by salicylates and other chemotactic repellents in *Escherichia coli* K-12. *Proceedings of the National* Academy of Sciences of the United States of America, 82, 8771–8774. doi:10.1073/pnas.82.24.8771.
- Cohen, S. P., Foulds, J. J., Levy, S. B., & Rosner, L. (1993). Salicylate induction of antibiotic resistance in *Escherichia coli*: Activation of *mar* operon and mar-independent pathway. *Journal of Bacteriology*, 175, 7856–7862.
- Purohit, H. J., Kapley, A., Moharikar, A., & Narde, G. (2003). Extraction of activated biological sludge for PCR compatible DNA from effluent treatment systems. *Journal of Microbiological Methods*, 52, 315–323. doi:10.1016/S0167-7012(02)00185-9.
- Kapley, A., Baere, T.-De., & Purohit, H. J. (2007). Eubacterial diversity of activated biomass from a common effluent treatment plant. Research in Microbiology, 158(6), 494–500. doi:10.1016/j. resmic.2007.04.004.
- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, J. D. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, 25, 4876–4882. doi:10.1093/nar/25.24.4876.
- American Public Health Association. American Water Works Association, Water Environment Federation (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC, USA: APHA.
- Fredrickson, A. G., & Stephanopoulus, G. N. (1981). Microbial competition. Science, 213, 972–979. doi:10.1126/science.7268409.
- Ratsak, C. H., Koouman, S. A. L. M., & Kooi, B. W. (1993). Modelling the growth of an oligochaete on activated sludge. *Water Research*, 27(5), 739–747. doi:10.1016/0043-1354(93)90136-6.
- Alexander, M. (1973). Nonbiodegradable and other recalcitrant molecules. Biotechnology and Bioengineering, 15, 611–647. doi:10.1002/bit.260150402.
- Dojka, M. A., Hugenholtz, P., Haack, S. K., & Pace, N. R. (1998). Microbial diversity in a hydrocarbonand chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. *Applied and Environmental Microbiology*, 64(10), 3869–3877.
- Popp, N., Schlomann, M., & Mau, M. (2006). Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. *Microbiology*, 152(11), 3291–3304. doi:10.1099/ mic.0.29054-0.
- Whiteley, A. S., & Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system. *Applied and Environmental Microbiology*, 66(6), 2400–2407. doi:10.1128/AEM.66.6.2400-2407.2000.
- Kuniki, K., Murakami-Nitta, T., Oishi, M., Ishiguro, S., & Kirimura, K. (2004). Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide. *Journal of Bioscience and Bioengineering*, 97(1), 82–84.
- Lorah, M., & Voytek, M. (2004). Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl
 chloride in wetland sediment microcosms and in situ porewater: Biogeochemical controls and
 associations with microbial communities. *Journal of Contaminant Hydrology*, 70(1–2), 117–145.
 doi:10.1016/j.jconhyd.2003.08.010.
- Scow, K. M., & Hicks, K. A. (2005). Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. *Current Opinion in Biotechnology*, 16(3), 246–253. doi:10.1016/j. copbio.2005.03.009.
- Roldán, M. D., Blasco, R., Caballero, F. J., & Castillo, F. (1997). Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Archives of Microbiology, 169(1), 36–42. doi:10.1007/ s002030050538.
- Song, Z.-Y., Zhou, J.-T., Wang, J., Yan, B., & Du, C.-H. (2003). Decolorization of azo dyes by Rhodobacter sphaeroides. Biotechnology Letters, 25(21), 1815–1818. doi:10.1023/A:1026244909758.
- Corvini, P. F. X., Meesters, R. J. W., Schäffer, A., Schröder, H. F., Vinken, R., & Hollender, J. (2004).
 Degradation of a nonylphenol single isomer by *Sphingomonas* sp. strain TTNP3 leads to a hydroxylation-induced migration product. *Applied and Environmental Microbiology*, 70(11), 6897–6900. doi:10.1128/AEM.70.11.6897-6900.2004.
- Crawford, R. L., & Ederer, M. M. (1999). Phylogeny of Sphingomonas species that degrade pentachlorophenol. Journal of Industrial Microbiology & Biotechnology, 23(4–5), 320–325. doi:10.1038/sj.jim.2900729.
- Wilkes, H., Wittich, R., Timmis, K. N., Fortnagel, P., & Francke, W. (1996). Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Applied and Environmental Microbiology, 62(2), 367–371.

- Dilbenedetto, A., Lo Noce, R. M., Narracci, M., & Aresta, M. (2006). Structure–biodegradation correlation of polyphenols for *Thauera aromatica* in anaerobic conditions. *Chemistry and Ecology*, 22 (S1), S133–S143. doi:10.1080/02757540600557975.
- 34. Shinoda, Y., Sakai, Y., Uenishi, H., Uchihashi, Y., Hiraishi, A., Yukawa, H., et al. (2004). Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, *Thauera* sp. strain DNT-1. *Applied and Environmental Microbiology*, 70(3), 1385–1392. doi:10.1128/AEM.70.3.1385-1392.2004.
- Kapley, A., Prasad, S., & Purohit, H. J. (2007). Changes in microbial diversity in fed-batch reactor operation with wastewater containing nitroaromatic residues. *Bioresource Technology*, 98(13), 2479– 2484. doi:10.1016/j.biortech.2006.09.012.
- Li, G., Huang, W., Lerner, D. N., & Zhang, X. (2000). Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Research, 34(15), 3845–3853. doi:10.1016/S0043-1354(00)00134-2.

